【LeetCode】Palindrome Partitioning II 解题报告,leetcodepalindrome
分享于 点击 30336 次 点评:61
【LeetCode】Palindrome Partitioning II 解题报告,leetcodepalindrome
【题目】
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could
be produced using 1 cut.
【分析】
问题:求字符串的最小分割数,使得分割后的子串都是回文串。动态规划的关键是找出动规方程:cutNum[i] = min(cutNum[i], cutNum[j + 1] + 1)
cuntNum[i] 表示字符串 s 从 i 到末尾的子串所需要的最小割数,如果从 i 到 j 的子串为回文串的话,那么最小割数就可能为 j + 1以后的子串的最小割数加上 j 和 j + 1 之间的一割。
【反向动规解法】
public class Solution {
public int minCut(String s) {
if (s == null || s.length() < 2) return 0;
int n = s.length();
boolean[][] isPalin = new boolean[n][n]; // isPalin[i][j]: is palindrome from i to j
int[] cutNum = new int[n]; // cutNum[i]: cuts numbers from i to end
for (int i = n - 1; i >= 0; i--) {
cutNum[i] = n - 1 - i;
for (int j = i; j < n; j++) {
if (s.charAt(i) == s.charAt(j) && (j - i < 2 || isPalin[i + 1][j - 1]) ) {
isPalin[i][j] = true;
if (j == n - 1) {
cutNum[i] = 0; // s[i...n-1] is palindrome, no need cut
} else {
cutNum[i] = Math.min(cutNum[i], cutNum[j + 1] + 1);
}
}
}
}
return cutNum[0];
}
}
可能有人对这种从后往前的方式不太习惯,那么可以看下面从前往后的动规方法。
【正向动规解法】
public class Solution {
public int minCut(String s) {
if (s == null || s.length() < 2) return 0;
int n = s.length();
boolean[][] isPalin = new boolean[n][n]; // isPalin[i][j]: is palindrome from i to j
int[] cutNum = new int[n]; // cutNum[i]: cuts numbers from 0 to i
for (int i = 0; i < n; i++) {
cutNum[i] = i;
for (int j = i; j >= 0; j--) {
if (s.charAt(j) == s.charAt(i) && (i - j < 2 || isPalin[j + 1][i - 1]) ) {
isPalin[j][i] = true;
if (j == 0) {
cutNum[i] = 0; // s[0...i] is palindrome, no need cut
} else {
cutNum[i] = Math.min(cutNum[i], cutNum[j - 1] + 1);
}
}
}
}
return cutNum[n - 1];
}
}
相关文章
- 暂无相关文章
用户点评