5 longest palindrome substring,longestpalindrome
分享于 点击 41217 次 点评:278
5 longest palindrome substring,longestpalindrome
第一眼看这题,只觉得要从中间开始向两端延伸,通过扫一遍所有的字母来实现。。。
但是代码不是特别好写,因为有奇数和偶数的两种情况。。。
既然这样,那就设计一个helper 方法,然后引入两个index,可以是相同的,代表奇数长度substring,也可以是相邻的,代表偶数长度substring
public class Solution{
private int lo, maxLen;
public String longestPalindrome(String s) {
int len = s.length();
if (len < 2)
return s;
for (int i = 0; i < len-1; i++) {
extendPalindrome(s, i, i); //assume odd length, try to extend Palindrome as possible
extendPalindrome(s, i, i+1); //assume even length.
}
return s.substring(lo, lo + maxLen);
}
private void extendPalindrome(String s, int j, int k) {
while (j >= 0 && k < s.length() && s.charAt(j) == s.charAt(k)) {
j--;
k++;
}
if (maxLen < k - j - 1) {
lo = j + 1;
maxLen = k - j - 1;
}
/* int start=0;
int len=0;
public String longestPalindrome(String s) {
if(s.length()==1) return s;
for(int i=0; i<s.length(); i++){
extend(s, i, i); // in case s has odd number of characters;
extend(s, i, i+1); // in case s has odd number of characters;
}
return s.substring(start, start+len);
}
private void extend(String s, int left, int right){
while(left>=0 && right<s.length() && s.charAt(left)==s.charAt(right)){
left--;
right++;
}
if(right-left-1>len){
start=left++;
len= right-left-1;
}*/
// here I only need to return the need the two index, or one index and the length;
// 以下是1月初做的,超时了。。。可能是while循环 无限进行下去了。。。也有可能程序正确但复杂度高。。。参考了别人的解法后,我来重现一下。。。见上方
/* String result= "";
for(int i=0; i<s.length(); i++){
int left=i-1;
int right=i+1;
while((left>=0)&&(right<s.length())){
if(s.charAt(left)==s.charAt(right)){
left--;
right++;
}
else if(s.charAt(left)!=s.charAt(right)){
break;
}
}
String tmp=s.substring(left+1, (right-1)+1); //wrong memory, correct: substring(begin, end), not substring(begin, length)
//result=result.length()>tmp.length()?result:tmp; // this is right, just to adjuct to the output in the question.
result=result.length()<tmp.length()?tmp:result;
int leftEven=i;
int rightEven=i+1;
while((leftEven>=0)&&(rightEven<s.length())){
if(s.charAt(leftEven)==s.charAt(rightEven)){
leftEven--;
rightEven++;
}
else if(s.charAt(leftEven)!=s.charAt(rightEven)){
break;
}
}
String tmpEven=s.substring(leftEven+1, (rightEven-1)+1); //wrong memory, correct: substring(begin, end), not substring(begin, length)
//result=result.length()>tmp.length()?result:tmp; // this is right, just to adjuct to the output in the question.
result=result.length()<tmpEven.length()?tmpEven:result;
// here I am re-using a lot of codes, so a helper() will be better
}
return result;*/
}
}
// I did not consider "bb"
今天的代码,写得简单多了。。。
public class Solution{
public String longestPalindrome(String s) {
int low=0;
int high=0;
int len=1;// smallest
for(int i=0; i<s.length()-1; i++){ // 只需到倒数第二位
int len1=pali(s,i,i);
if(len1>len){
len=len1;
low=i-(len1-1)/2;
high=i+(len1-1)/2;
}
int len2=pali(s,i,i+1);
if(len2>len){
len=len2;
low=i-(len2/2-1);
high=i+1+(len2/2-1);
}
}
return s.substring(low,high+1); // error: s.subtring(low, high);
}
private int pali(String s, int l, int r){
while(l>=0 && r<s.length() && s.charAt(l)==s.charAt(r)){
l--;
r++;
}
return (r-1)-(l+1)+1;
}
}
相关文章
- 暂无相关文章
用户点评