欢迎访问悦橙教程(wld5.com),关注java教程。悦橙教程  java问答|  每日更新
页面导航 : > > 文章正文

Java 锁,

来源: javaer 分享于  点击 2144 次 点评:282

Java 锁,


http://blog.csdn.net/hongchangfirst/article/details/26004335

http://www.javaweb1024.com/java/JavaWebzhongji/2015/09/06/847.html

https://blog.csdn.net/u012545728/article/details/80843595

 

目录

1、关于乐观锁和悲观锁:

2、关于锁的开销:

3、悲观锁的读写:

4、乐观锁的读写:

5、乐观锁的写修改:

6、不可重入锁:

7、可重入锁:

8、自旋锁:

9、排他锁(ReentrantLock)

9.1、普通ReentrantLock

9.2、带条件的ReenTrantLock

10、synchronized

10.1、同步方法

10.2、代码块对象同步

11、ReentrantReadWriteLock


 

 

1、关于乐观锁和悲观锁:

悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。

乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。java中的乐观锁基本都是通过CAS操作实现的,CAS 是一种更新的原子操作CAS算法 即compare and swap(比较与交换),是一种有名的无锁算法。无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。

两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下,即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果经常产生冲突,上层应用会不断的进行retry,这样反倒是降低了性能,所以这种情况下用悲观锁就比较合适。

但是不管用什么锁,都必须保证线程安全,不然锁的意义就不存在了。

2、关于锁的开销:

这里的 CountPojo 是多线程操作的对象,为了验证结果

PessimisticTest 为悲观锁读写实现类,读和写都会对操作加锁

OptimisticTest 为乐观锁,读直接不加锁和验证,写的话加了个版本验证(但是这个版本验证不能实现线程安全)

public class CountPojo {
	
	private int count = 0;
	private String uuid = "";
	
	public int getCount() {
		return count;
	}
	public void setCount(int count) {
		this.count = count;
	}
	public String getUuid() {
		return uuid;
	}
	public void setUuid(String uuid) {
		this.uuid = uuid;
	}
}
import java.util.UUID;

public class PessimisticTest {
 
	public CountPojo countPojo = null;
	 
	public PessimisticTest(CountPojo countPojo) {
		this.countPojo = countPojo;
	}

	public int getValue() {
		synchronized (countPojo) {
			return countPojo.getCount();
		}
	}
	
	public void updateValue(int addValue) {
		synchronized (countPojo) {
			countPojo.setCount(countPojo.getCount() + addValue);
			countPojo.setUuid(UUID.randomUUID().toString());
		}
	}
}
import java.util.UUID;

public class OptimisticTest {
 
	public CountPojo countPojo = null;
 
	public OptimisticTest(CountPojo countPojo) {
		this.countPojo = countPojo;
	}

	public int getValue() {
		return countPojo.getCount();
	}
	
	public void updateValue(int addValue) {
		String uuid = countPojo.getUuid();
		int currentInt = countPojo.getCount();
		int operInt = currentInt + addValue;
		if (uuid.equals(countPojo.getUuid())) {
			countPojo.setCount(operInt);
			countPojo.setUuid(UUID.randomUUID().toString());
		} else {
			updateValue(addValue);
		}
	}
}
public class ThreadMainTest {
	
	public static void main(String[] args) throws InterruptedException {
		
		CountPojo countPojo1 = new CountPojo();
		PessimisticTest pessimisticTest = new PessimisticTest(countPojo1);
		long start1 = System.currentTimeMillis();
		for (int i = 0; i < 900000000; i ++) {
			pessimisticTest.getValue();	
		}
		long count1 = System.currentTimeMillis() - start1;
		System.out.println("PessimisticTest Use : " + count1 + " ms");
		
		CountPojo countPojo2 = new CountPojo();
		OptimisticTest optimisticTest = new OptimisticTest(countPojo2);
		long start2 = System.currentTimeMillis();
		for (int i = 0; i < 900000000; i ++) {
			optimisticTest.getValue();
		}
		long count2 = System.currentTimeMillis() - start2;
		System.out.println("OptimisticTest Use : " + count2 + " ms");
	}
}

显示结果:

PessimisticTest Use : 17473 ms
OptimisticTest Use : 3 ms

同样是取值,很明显锁的开销是非常大的、

3、悲观锁的读写:

CallableLockTest 为了获取线程内部执行时间

MainTest 测试类做了修改

import java.util.concurrent.Callable;

public class CallableLockTest implements Callable<Integer> {

	private PessimisticTest lockTest = null;
	
	public CallableLockTest(PessimisticTest optimisticTest) {
		this.lockTest = optimisticTest;
	}
	
	@Override
	public Integer call() throws Exception {
		Long start = System.currentTimeMillis();
		int i = 0;
		while (i ++ < 100) {
			this.lockTest.updateValue(1);
		}
		Long count = System.currentTimeMillis() - start;
		return count.intValue();
	}

}
package com.busy.lock.test;

import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ThreadMainTest {
	
	public static void main(String[] args) throws InterruptedException, ExecutionException {
		
		CountPojo countPojo1 = new CountPojo();
		countPojo1.setUuid(UUID.randomUUID().toString());
		PessimisticTest pessimisticTest = new PessimisticTest(countPojo1);
		ExecutorService pool = Executors.newFixedThreadPool(4);
		CallableLockTest callableLockTest = new CallableLockTest(pessimisticTest);
		List<Future<Integer>> futureList = new ArrayList<Future<Integer>>();
		for (int i = 0; i < 10; i ++) {
			futureList.add(pool.submit(callableLockTest));
		}
		int count1 = 0;
		for (Future<Integer> future : futureList) {
			count1 += future.get();
		}
		System.out.println("PessimisticTest Use : " + count1 + " ms");
		System.out.println("PessimisticTest Count : " + countPojo1.getCount());
		

	}
}

 

 

执行结果:

PessimisticTest Use : 31 ms
PessimisticTest Count : 1000

说明是线程安全的。

4、乐观锁的读写:

修改一下 CallableLockTest:

import java.util.concurrent.Callable;

public class CallableLockTest implements Callable<Integer> {

	private OptimisticTest lockTest = null;
	
	public CallableLockTest(OptimisticTest optimisticTest) {
		this.lockTest = optimisticTest;
	}
	
	@Override
	public Integer call() throws Exception {
		Long start = System.currentTimeMillis();
		int i = 0;
		while (i ++ < 100) {
			this.lockTest.updateValue(1);
		}
		Long count = System.currentTimeMillis() - start;
		return count.intValue();
	}

}

测试类:

public class ThreadMainTest {
	
	public static void main(String[] args) throws InterruptedException, ExecutionException {
		
		CountPojo countPojo1 = new CountPojo();
		countPojo1.setUuid(UUID.randomUUID().toString());
		OptimisticTest pessimisticTest = new OptimisticTest(countPojo1);
		ExecutorService pool = Executors.newFixedThreadPool(4);
		CallableLockTest callableLockTest = new CallableLockTest(pessimisticTest);
		List<Future<Integer>> futureList = new ArrayList<Future<Integer>>();
		for (int i = 0; i < 10; i ++) {
			futureList.add(pool.submit(callableLockTest));
		}
		int count1 = 0;
		for (Future<Integer> future : futureList) {
			count1 += future.get();
		}
		System.out.println("PessimisticTest Use : " + count1 + " ms");
		System.out.println("PessimisticTest Count : " + countPojo1.getCount());

	}
}

执行结果:

PessimisticTest Use : 22 ms
PessimisticTest Count : 999

结果说明这种乐观锁的写验证方式是不支持线程安全的,下面做出修改:

5、乐观锁的写修改:

将计数字段类型变为线程安全的:AtomicInteger

CountPojo 修改为:

import java.util.concurrent.atomic.AtomicInteger;

public class CountPojo {
	
	private AtomicInteger count = new AtomicInteger(0);
	private String uuid = "";
	
	public AtomicInteger getCount() {
		return count;
	}
	public void setCount(AtomicInteger count) {
		this.count = count;
	}
	public String getUuid() {
		return uuid;
	}
	public void setUuid(String uuid) {
		this.uuid = uuid;
	}
}

OptimisticTest 修改为:

import java.util.UUID;

public class OptimisticTest {
 
	public CountPojo countPojo = null;
 
	public OptimisticTest(CountPojo countPojo) {
		this.countPojo = countPojo;
	}

	public int getValue() {
		return countPojo.getCount().get();
	}
	
	public void updateValue(int addValue) {
		countPojo.getCount().addAndGet(addValue);
		countPojo.setUuid(UUID.randomUUID().toString());
	}
}

执行结果:

PessimisticTest Use : 30 ms
PessimisticTest Count : 1000

这样说明线程安全了

6、不可重入锁:

即若当前线程执行某个方法已经获取了该锁,那么在方法中尝试再次获取锁时,就会获取不到被阻塞。

public class UnReentrantLock {
	private boolean isLocked = false;

	public synchronized void lock() throws InterruptedException {
		while (isLocked) {
			wait();
		}
		isLocked = true;
	}

	public synchronized void unlock() {
		isLocked = false;
		notify();
	}
}

测试类:

public class Count {
	UnReentrantLock lock = new UnReentrantLock();

	public void print() throws InterruptedException {
		lock.lock();
		doAdd();
		lock.unlock();
	}

	public void doAdd() throws InterruptedException {
		lock.lock();
		System.out.println("第二次获得锁");
		lock.unlock();
	}
}
public class MainTest {

	public static void main(String[] args) throws InterruptedException {
		Count count = new Count();
		count.print();
	}

}

结果是发生线程阻塞

7、可重入锁:

意味着线程可以进入它已经拥有的锁的同步代码块

public class ReentrantLock {
	boolean isLocked = false;
	Thread lockedBy = null;
	int lockedCount = 0;

	public synchronized void lock() throws InterruptedException {
		Thread thread = Thread.currentThread();
		while (isLocked && lockedBy != thread) {
			wait();
		}
		isLocked = true;
		lockedCount++;
		lockedBy = thread;
	}

	public synchronized void unlock() {
		if (Thread.currentThread() == this.lockedBy) {
			lockedCount--;
			if (lockedCount == 0) {
				isLocked = false;
				notify();
			}
		}
	}
}

修改6中的测试类:

public class Count {
	ReentrantLock lock = new ReentrantLock();

	public void print() throws InterruptedException {
		lock.lock();
		doAdd();
		lock.unlock();
	}

	public void doAdd() throws InterruptedException {
		lock.lock();
		System.out.println("第二次获得锁");
		lock.unlock();
	}
}

结果不会发生阻塞

8、自旋锁:

自旋锁(spinlock):是指当一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取,直到获取到锁才会退出循环。

import java.util.concurrent.atomic.AtomicReference;

public class SpinLock {
    private AtomicReference<Thread> cas = new AtomicReference<Thread>();
    
    public void lock() {
        Thread current = Thread.currentThread();
        // 利用CAS
        while (!cas.compareAndSet(null, current)) {
            System.out.println(Thread.currentThread().getName()+"[线程等待获取锁]");
        }
        System.out.println(Thread.currentThread().getName()+"[线程获取到锁]");
    }
    public void unlock() {
        Thread current = Thread.currentThread();
        cas.compareAndSet(current, null);
    }
}

其中  cas.compareAndSet(null, current) 使用的是Unsafe的方法,如果cas与null(期待值)相等,则把current(更新值)付给cas,否则什么都不做

9、排他锁(ReentrantLock)

ReentrantLock是一个排他锁,同一时间只允许一个线程访问

9.1、普通ReentrantLock

package com.busymonkey.threadfunc;
 
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
 
public class ReentrantLockTest implements Runnable{
 
	private int tickets = 100;
	private Lock lock = new ReentrantLock();
 
	@Override
	public void run() {
		while (tickets > 0) {
			try {
				lock.lock();// 加锁
				//lock.tryLock();
				//lock.tryLock(time, unit);
				if (tickets > 0) {
					try {
						Thread.sleep(100);
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
					System.out.println(Thread.currentThread().getName() + "正在出售第" + (tickets--) + "张票");
				}
			} finally {
				lock.unlock();// 释放锁
			}
		}
	}
}
package com.busymonkey.threadfunc;
 
public class SellTicket {
 
	public static void main(String[] args) {
		ReentrantLockTest str = new ReentrantLockTest();
		Thread t1 = new Thread(str,"窗口1");
		Thread t2 = new Thread(str,"窗口2");
		Thread t3 = new Thread(str,"窗口3");
		t1.start();
		t2.start();
		t3.start();
	}
 
}

9.2、带条件的ReenTrantLock

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
 
public class LockMain {
 
    static class NumberWrapper {
        public int value = 1;
    }
 
    public static void main(String[] args)  {
        //初始化可重入锁
        final Lock lock = new ReentrantLock();
        //第一个条件当屏幕上输出到3
        final Condition reachThreeCondition = lock.newCondition();
        //第二个条件当屏幕上输出到6
        final Condition reachSixCondition = lock.newCondition();
        //NumberWrapper只是为了封装一个数字,一边可以将数字对象共享,并可以设置为final
        final NumberWrapper num = new NumberWrapper();
        //初始化A线程
        Thread threadA = new Thread(new Runnable() {
            @Override
            public void run() {
                //需要先获得锁
                lock.lock();
                try {
                    //A线程先输出前3个数
                    while (num.value <= 3) {
                        System.out.println("threadA start write"+num.value);
                        num.value++;
                    }
                    //输出到3时要signal,告诉B线程可以开始了
                    reachThreeCondition.signal();
                } finally {
                    lock.unlock();
                }
                lock.lock();
                try {
                    //等待输出6的条件
                    reachSixCondition.await();
                    //输出剩余数字
                    while (num.value <= 9) {
                        System.out.println("threadA start write"+num.value);
                        num.value++;
                    }
 
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lock.unlock();
                }
            }
        });
 
 
        Thread threadB = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    lock.lock();
 
                    while (num.value <= 3) {
                        //等待3输出完毕的信号
                        reachThreeCondition.await();
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lock.unlock();
                }
                try {
                    lock.lock();
                    //已经收到信号,开始输出4,5,6
                    while (num.value <= 6) {
                    	System.out.println("threadB start write"+num.value);
                        num.value++;
                    }
                    //4,5,6输出完毕,告诉A线程6输出完了
                    reachSixCondition.signal();
                } finally {
                    lock.unlock();
                }
            }
        });
 
        //启动两个线程
        threadB.start();
        threadA.start();
    }
 
}

总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

1、Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

2、synchronized是在JVM层面上实现的,不但可以通过一些监控工具监控synchronized的锁定,而且在代码执行时出现异常,JVM会自动释放锁定,但是使用Lock则不行,lock是通过代码实现的,要保证锁定一定会被释放,就必须将unLock()放到finally{}中

3、在资源竞争不是很激烈的情况下,Synchronized的性能要优于ReetrantLock,但是在资源竞争很激烈的情况下,Synchronized的性能会下降几十倍

但是ReetrantLock的性能能维持常态;

10、synchronized

synchronized 是一个可重入锁

重入锁实现可重入性原理或机制是:每一个锁关联一个线程持有者和计数器,当计数器为 0 时表示该锁没有被任何线程持有,那么任何线程都可能获得该锁而调用相应的方法;当某一线程请求成功后,JVM会记下锁的持有线程,并且将计数器置为 1;此时其它线程请求该锁,则必须等待;而该持有锁的线程如果再次请求这个锁,就可以再次拿到这个锁,同时计数器会递增;当线程退出同步代码块时,计数器会递减,如果计数器为 0,则释放该锁。

package com.busy.lock.test;

public class ThreadMainTest {
	
	public static void main(String[] args) {
		SynchronizeThread str = new SynchronizeThread();
		Thread t1 = new Thread(str,"窗口1");
		Thread t2 = new Thread(str,"窗口2");
		Thread t3 = new Thread(str,"窗口3");
		t1.start();
		t2.start();
		t3.start();
	}
}

10.1、同步方法

package com.busy.lock.test;

public class SynchronizeThread implements Runnable {

	private int tickets = 100;
	
	@Override
	public void run() {
		while (tickets > 0) {
			try {
				doMethod();
			} finally {
				
			}
		}
	}
	
	private synchronized void doMethod() {
		if (tickets > 0) {
			try {
				Thread.sleep(50);
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
			System.out.println(Thread.currentThread().getName() + "正在出售第" + (tickets--) + "张票");
		}
	}
}

10.2、代码块对象同步

package com.busy.lock.test;

public class SynchronizeThread implements Runnable {

	private int tickets = 100;
	
	@Override
	public void run() {
		while (tickets > 0) {
			try {
				synchronized (this) {
					if (tickets > 0) {
						try {
							Thread.sleep(50);
						} catch (InterruptedException e) {
							e.printStackTrace();
						}
						System.out.println(Thread.currentThread().getName() + "正在出售第" + (tickets--) + "张票");
					}
				}
			} finally {
			}
		}
	}
	
}

11、ReentrantReadWriteLock

https://www.cnblogs.com/zaizhoumo/p/7782941.html

ReentrantReadWriteLock是Lock的另一种实现方式,我们已经知道了ReentrantLock是一个排他锁,同一时间只允许一个线程访问,而ReentrantReadWriteLock允许多个读线程同时访问,但不允许写线程和读线程、写线程和写线程同时访问。相对于排他锁,提高了并发性。在实际应用中,大部分情况下对共享数据(如缓存)的访问都是读操作远多于写操作,这时ReentrantReadWriteLock能够提供比排他锁更好的并发性和吞吐量。

读写锁内部维护了两个锁,一个用于读操作,一个用于写操作。所有 ReadWriteLock实现都必须保证 writeLock操作的内存同步效果也要保持与相关 readLock的联系。也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新。

ReentrantReadWriteLock支持以下功能:

  • 支持公平和非公平的获取锁的方式
  • 支持可重入。读线程在获取了读锁后还可以获取读锁;写线程在获取了写锁之后既可以再次获取写锁又可以获取读锁
  • 还允许从写入锁降级为读取锁,其实现方式是:先获取写入锁,然后获取读取锁,最后释放写入锁。但是,从读取锁升级到写入锁是不允许的
  • 读取锁和写入锁都支持锁获取期间的中断
  • Condition支持。仅写入锁提供了一个 Conditon 实现;读取锁不支持 Conditon ,readLock().newCondition() 会抛出 UnsupportedOperationException

2、关于锁的内容:

对象锁(上面对map进行加锁就是对象锁):

Java的所有对象都含有1个互斥锁,这个锁由JVM自动获取和释放。线程进入synchronized方法的时候获取该对象的锁,当然如果已经有线程获取了这个对象的锁,那么当前线程会等待;synchronized方法正常返回或者抛异常而终止,JVM会自动释放对象锁。这里也体现了用synchronized来加锁的1个好处,方法抛异常的时候,锁仍然可以由JVM来自动释放。

类锁:

对象锁是用来控制实例方法之间的同步,类锁是用来控制静态方法(或静态变量互斥体)之间的同步。其实类锁只是一个概念上的东西,并不是真实存在的,它只是用来帮助我们理解锁定实例方法和静态方法的区别的。我们都知道,java类可能会有很多个对象,但是只有1个Class对象,也就是说类的不同实例之间共享该类的Class对象。Class对象其实也仅仅是1个java对象,只不过有点特殊而已。由于每个java对象都有1个互斥锁,而类的静态方法是需要Class对象。所以所谓的类锁,不过是Class对象的锁而已。获取类的Class对象有好几种,最简单的就是MyClass.class的方式。

 

常量池锁(比如String的intern()方法):

使用String.inter()是这种思路的一种具体实现。类 String 维护一个字符串池。 当调用 intern 方法时,如果池已经包含一个等于此 String 对象的字符串(该对象由 equals(Object) 方法确定),则返回池中的字符串。可见,当String相同时,String.intern()总是返回同一个对象,因此就实现了对同一用户加锁。由于锁的粒度局限于具体用户,使系统获得了最大程度的并发。如下:

 

 

package Test;

public class Test {

    public static void main(String[] args) throws InterruptedException {
    	
    	CustomThread uploadDetect1 = new CustomThread();
    	CustomThread uploadDetect2 = new CustomThread();
    	CustomThread uploadDetect3 = new CustomThread();
    	CustomThread uploadDetect4 = new CustomThread();
    	CustomThread uploadDetect5 = new CustomThread();
		Thread t1 = new Thread(uploadDetect1);
		Thread t2 = new Thread(uploadDetect2);
		Thread t3 = new Thread(uploadDetect3);
		Thread t4 = new Thread(uploadDetect4);
		Thread t5 = new Thread(uploadDetect5);
		t1.start();
		t2.start();
		t3.start();
		t4.start();
		t5.start();
		

    }
}

class Stu1 {
	static int count = 100;
	
	public void func(String userId) {
		synchronized ((userId).intern()) {
			count --;
			int out = count;
			System.out.println("Count : "+out);
		}
	}
}

class CustomThread implements Runnable {
	Stu1 stu1 = new Stu1();
	
	public void run() {
		while(Stu1.count > 0) {
			stu1.func("user1");
			try {
				Thread.sleep(4);
			} catch (InterruptedException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
        }
	}
}

 

 

 

 

3、关于String的intern()方法的缺陷:类 String 维护一个字符串池是放在JVM perm区的,如果用户数特别多,导致放入字符串池的String不可控,有可能导致OOM错误或者过多的Full GC。怎么样能控制锁的个数,同时减小粒度锁呢?直接使用Java ConcurrentHashMap?或者你想加入自己更精细的控制?那么可以借鉴ConcurrentHashMap的方式,将需要加锁的对象分为多个bucket,每个bucket加一个锁。伪代码如下:

 

Map locks = new Map();  
List lockKeys = new List();  
for(int number : 1 - 10000) {  
   Object lockKey = new Object();  
   lockKeys.add(lockKey);  
    locks.put(lockKey, new Object());  
}  
  
public void doSomeThing(String uid) {  
   Object lockKey = lockKeys.get(uid.hash() % lockKeys.size());  
   Object lock = locks.get(lockKey);  
     
   synchronized(lock) {  
      // do something  
   }  
}  

 

 

 

 

 

 

 

相关文章

    暂无相关文章
相关栏目:

用户点评