【java】【java collection】Vector,
分享于 点击 45365 次 点评:50
【java】【java collection】Vector,
学习vector请看官方API
https://docs.oracle.com/javase/7/docs/api/java/util/Vector.html
学习参考资料
http://www.cnblogs.com/skywang12345/p/3308833.html
学习vector请看源代码 自己还没有全部看完 看了一大半 还有后面一部分没有看完
/*
//底层通过数组实现 原始容量为10 增加系数可是自己定或者直接两倍
The Vector class implements a growable array of objects.
Like an array, it contains components that can be accessed using an integer index.
However, the size of a Vector can grow or shrink as needed to accommodate adding and removing items after the Vector has been created.
Each vector tries to optimize storage management by maintaining a capacity and a capacityIncrement. The capacity is always at least as large as the vector size; it is usually larger because as components are added to the vector, the vector's storage increases in chunks the size of capacityIncrement. An application can increase the capacity of a vector before inserting a large number of components; this reduces the amount of incremental reallocation.
//迭代器 只能是自己add remove等不会报异常 对于其他其他迭代器修改的就是会报错
//Enumerations就不会报错 即便是有别的线程对其进行修改 看两者的源代码就知道了
//迭代器 每次都是会有一个 checkForComodification(); 就是去判断modcount是否等于expectedcount 这点可以去fail-fast文章去看更详细的内容
The iterators returned by this class's iterator and listIterator methods are fail-fast: if the vector is structurally modified at any time after the iterator is created, in any way except through the iterator's own remove or add methods, the iterator will throw a ConcurrentModificationException.
Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.
The Enumerations returned by the elements method are not fail-fast.
//fail-fast不能是能够报异常的 只能是尽最大能力去报错
Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification.
Fail-fast iterators throw ConcurrentModificationException on a best-effort basis.
Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.
As of the Java 2 platform v1.2, this class was retrofitted to implement the List interface, making it a member of the Java Collections Framework. Unlike the new collection implementations, Vector is synchronized. If a thread-safe implementation is not needed, it is recommended to use ArrayList in place of Vector.
*/
public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
//保存vector中数据的数组
protected Object[] elementData;
//数组元素数量
protected int elementCount;
//容量增长系数 如果小于等于0 则每次数组容量都增加为原来的两倍
protected int capacityIncrement;
//Vector版本序列号
private static final long serialVersionUID = -2767605614048989439L;
//默认容量为10
public Vector() {
this(10);
}
//指定vector容量大小的构造函数
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
//指定Vector容量大小和增长系数的构造函数
public Vector(int initialCapacity, int capacityIncrement) {
super();//调用抽象类AbstractList默认构造函数
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
//指定集合的Vector的构造函数
public Vector(Collection<? extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
//将数组Vector的全部元素都拷贝到数组anArray中
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
//将当前容量值减少为实际元素个数
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}
//调整数组长度
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
ensureCapacityHelper(newSize);
} else {
//如果比原来的数组长度小 就需要将其后面的元素设置成null
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
elementCount = newSize;
}
//确定数组长度是否需要增加
public synchronized void ensureCapacity(int minCapacity) {
if (minCapacity > 0) {
modCount++;
ensureCapacityHelper(minCapacity);
}
}
private void ensureCapacityHelper(int minCapacity) {
//当现有数组长度小于我们最小要求数的时候 就需要增加数组长度
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
//不同虚拟申请最大数是不一样的 有一些会保留一些头部信息
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
//最大申请数组长度
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0)
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
//返回数组总长度
public synchronized int capacity() {
return elementData.length;
}
//返回数组当前元素个数
public synchronized int size() {
return elementCount;
}
//判断Vector是否为空
public synchronized boolean isEmpty() {
return elementCount == 0;
}
//返回Vector中全部元素对应的Enumeration
public Enumeration<E> elements() {
return new Enumeration<E>() {//通过匿名类实现Enumeration
int count = 0;
//是否存在下一个元素
public boolean hasMoreElements() {
return count < elementCount;
}
//获取下一个元素
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return elementData(count++);
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}
//从index位置开始判断是否有对象o 需要分别对象o是否为null
public synchronized int indexOf(Object o, int index) {
if (o == null) {
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
public int indexOf(Object o) {
return indexOf(o, 0);
}
//返回元素中是否包含对象o
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}
//相比较于前面indexof 这里的lastindexof是从后面往前面遍历 对象o也是需要判断是否为null 两种情况进行遍历查找
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
if (o == null) {
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}
//通过下标去获取元素
public synchronized E elementAt(int index) {
if (index >= elementCount) {//首先需要判断元素下标位置
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
return elementData(index);
}
//获取首个元素 但是需要注意数组是否为空 不然会报错
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(0);
}
//获取最后一个元素
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(elementCount - 1);
}
//和上面的第一个、最后一个元素 都是需要考虑边界情况
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}
public synchronized void removeElementAt(int index) {
modCount++; //删除元素属于结构性修改
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {//后面的元素从后往前移动
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;//元素个数减一
//记得将最后一个元素设置成null 能够gc
elementData[elementCount] = null; /* to let gc do its work */
}
public synchronized void insertElementAt(E obj, int index) {
modCount++;//增加元素也属于结构性修改
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
//但是需要去判断是否数组的长度是否满足当前的要求
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;//减少的时候需要让gc能够去回收 即设置成null
}
//同样是增加元素 但是需要注意是否有返回值
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
public void add(int index, E element) {
insertElementAt(element, index);
}
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);//首先判断对象中是否有其元素
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}
public boolean remove(Object o) {
return removeElement(o);
}
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work
return oldValue;
}
//在java中 移除数组所有元素 只需要将其内容设置成null即可
public synchronized void removeAllElements() {
modCount++;
// Let gc do its work
for (int i = 0; i < elementCount; i++)
elementData[i] = null;
elementCount = 0;
}
public void clear() {
removeAllElements();
}
//克隆函数
public synchronized Object clone() {
try {
@SuppressWarnings("unchecked")
Vector<E> v = (Vector<E>) super.clone();
//// 将当前Vector的全部元素拷贝到v中
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
//返回Object数组
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}
// 返回Vector的模板数组。所谓模板数组,即可以将T设为任意的数据类型
@SuppressWarnings("unchecked")
public synchronized <T> T[] toArray(T[] a) {
// 若数组a的大小 < Vector的元素个数
// 则新建一个T[]数组,数组大小是“Vector的元素个数”,并将“Vector”全部拷贝到新数组中
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
// 若数组a的大小 >= Vector的元素个数;
// 则将Vector的全部元素都拷贝到数组a中
System.arraycopy(elementData, 0, a, 0, elementCount);
//如果是超出的部分 后面数组内容设置为null
if (a.length > elementCount)
a[elementCount] = null;//好像只需要设置后面第一个元素值为null即可
return a;
}
//一个函数的名称和成员属性的名称是一样的 在调用的时候根据是否有括号去区别就可以了
// Positional Access Operations
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
//注意下标边界
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return elementData(index);
}
//set注意是有返回值的 返回旧位置上面的元素值
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
// Bulk Operations 批量操作
/*
抽象类AbstractCollection containsAll源代码
public boolean containsAll(Collection<?> c) {
for (Object e : c)
if (!contains(e))
return false;
return true;
}
*/
public synchronized boolean containsAll(Collection<?> c) {
return super.containsAll(c);
}
public synchronized boolean addAll(Collection<? extends E> c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);//确保容量
System.arraycopy(a, 0, elementData, elementCount, numNew);//将数组a的内容全部加到数组elementData的后面
elementCount += numNew;
return numNew != 0; //如果没有添加新元素 则返回false
}
/*
Objects中的源代码
public static <T> T requireNonNull(T obj) {
if (obj == null)
throw new NullPointerException();
return obj;
}
//将elementData中所有数组c的元素全部删除 如果有元素删除 那么返回true 反之false
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
boolean modified = false;
Iterator<?> it = iterator();
while (it.hasNext()) {
if (c.contains(it.next())) {
it.remove();
modified = true;
}
}
return modified;
}
*/
public synchronized boolean removeAll(Collection<?> c) {
return super.removeAll(c);
}
/*
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
boolean modified = false;
Iterator<E> it = iterator();
while (it.hasNext()) {
if (!c.contains(it.next())) { //只保留和c中数组一样元素内容
it.remove();
modified = true;
}
}
return modified;
}
*/
public synchronized boolean retainAll(Collection<?> c) {
return super.retainAll(c);
}
public synchronized boolean addAll(int index, Collection<? extends E> c) {
modCount++;
//检查插入位置
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);//确保数组容量
int numMoved = elementCount - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew;
return numNew != 0;
}
/**
* Compares the specified Object with this Vector for equality. Returns
* true if and only if the specified Object is also a List, both Lists
* have the same size, and all corresponding pairs of elements in the two
* Lists are <em>equal</em>. (Two elements {@code e1} and
* {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
* e1.equals(e2))}.) In other words, two Lists are defined to be
* equal if they contain the same elements in the same order.
*
* @param o the Object to be compared for equality with this Vector
* @return true if the specified Object is equal to this Vector
*/
public synchronized boolean equals(Object o) {
return super.equals(o);
}
/*
抽象类的AbstractList hashcode函数
public int hashCode() {
int hashCode = 1;
for (E e : this)
hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
return hashCode;
}
*/
public synchronized int hashCode() {
return super.hashCode();
}
/*
抽象类的AbstractList toString()函数
public String toString() {
Iterator<E> it = iterator();
if (! it.hasNext())
return "[]";
StringBuilder sb = new StringBuilder();
sb.append('[');
for (;;) {
E e = it.next();
sb.append(e == this ? "(this Collection)" : e);
if (! it.hasNext())
return sb.append(']').toString();
sb.append(',').append(' ');
}
}
*/
public synchronized String toString() {
return super.toString();
}
//子数组
public synchronized List<E> subList(int fromIndex, int toIndex) {
return Collections.synchronizedList(super.subList(fromIndex, toIndex),
this);
}
/**
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
*/
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newElementCount = elementCount - (toIndex-fromIndex);
while (elementCount != newElementCount)
elementData[--elementCount] = null;
}
/**
* Save the state of the {@code Vector} instance to a stream (that
* is, serialize it).
* This method performs synchronization to ensure the consistency
* of the serialized data.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final java.io.ObjectOutputStream.PutField fields = s.putFields();
final Object[] data;
synchronized (this) {
fields.put("capacityIncrement", capacityIncrement);
fields.put("elementCount", elementCount);
data = elementData.clone();
}
fields.put("elementData", data);
s.writeFields();
}
/**
* Returns a list iterator over the elements in this list (in proper
* sequence), starting at the specified position in the list.
* The specified index indicates the first element that would be
* returned by an initial call to {@link ListIterator#next next}.
* An initial call to {@link ListIterator#previous previous} would
* return the element with the specified index minus one.
*
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public synchronized ListIterator<E> listIterator(int index) {
if (index < 0 || index > elementCount)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
/**
* Returns a list iterator over the elements in this list (in proper
* sequence).
*
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @see #listIterator(int)
*/
public synchronized ListIterator<E> listIterator() {
return new ListItr(0);
}
/**
* Returns an iterator over the elements in this list in proper sequence.
*
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @return an iterator over the elements in this list in proper sequence
*/
public synchronized Iterator<E> iterator() {
return new Itr();
}
/**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
// Racy but within spec, since modifications are checked
// within or after synchronization in next/previous
return cursor != elementCount;
}
public E next() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor;
if (i >= elementCount)
throw new NoSuchElementException();
cursor = i + 1;
return elementData(lastRet = i);
}
}
public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.remove(lastRet);
expectedModCount = modCount;
}
cursor = lastRet;
lastRet = -1;
}
@Override
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
synchronized (Vector.this) {
final int size = elementCount;
int i = cursor;
if (i >= size) {
return;
}
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) Vector.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
action.accept(elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
/**
* An optimized version of AbstractList.ListItr
*/
final class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
public E previous() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
cursor = i;
return elementData(lastRet = i);
}
}
public void set(E e) {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.set(lastRet, e);
}
}
public void add(E e) {
int i = cursor;
synchronized (Vector.this) {
checkForComodification();
Vector.this.add(i, e);
expectedModCount = modCount;
}
cursor = i + 1;
lastRet = -1;
}
}
@Override
public synchronized void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int elementCount = this.elementCount;
for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public synchronized boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final int size = elementCount;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
if (filter.test(element)) {
removeSet.set(i);
removeCount++;
}
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i);
elementData[j] = elementData[i];
}
for (int k=newSize; k < size; k++) {
elementData[k] = null; // Let gc do its work
}
elementCount = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
@Override
@SuppressWarnings("unchecked")
public synchronized void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = elementCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@SuppressWarnings("unchecked")
@Override
public synchronized void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, elementCount, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
/**
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
* list.
*
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
* Overriding implementations should document the reporting of additional
* characteristic values.
*
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
@Override
public Spliterator<E> spliterator() {
return new VectorSpliterator<>(this, null, 0, -1, 0);
}
/** Similar to ArrayList Spliterator */
static final class VectorSpliterator<E> implements Spliterator<E> {
private final Vector<E> list;
private Object[] array;
private int index; // current index, modified on advance/split
private int fence; // -1 until used; then one past last index
private int expectedModCount; // initialized when fence set
/** Create new spliterator covering the given range */
VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,
int expectedModCount) {
this.list = list;
this.array = array;
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
private int getFence() { // initialize on first use
int hi;
if ((hi = fence) < 0) {
synchronized(list) {
array = list.elementData;
expectedModCount = list.modCount;
hi = fence = list.elementCount;
}
}
return hi;
}
public Spliterator<E> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new VectorSpliterator<E>(list, array, lo, index = mid,
expectedModCount);
}
@SuppressWarnings("unchecked")
public boolean tryAdvance(Consumer<? super E> action) {
int i;
if (action == null)
throw new NullPointerException();
if (getFence() > (i = index)) {
index = i + 1;
action.accept((E)array[i]);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> action) {
int i, hi; // hoist accesses and checks from loop
Vector<E> lst; Object[] a;
if (action == null)
throw new NullPointerException();
if ((lst = list) != null) {
if ((hi = fence) < 0) {
synchronized(lst) {
expectedModCount = lst.modCount;
a = array = lst.elementData;
hi = fence = lst.elementCount;
}
}
else
a = array;
if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
while (i < hi)
action.accept((E) a[i++]);
if (lst.modCount == expectedModCount)
return;
}
}
throw new ConcurrentModificationException();
}
public long estimateSize() {
return (long) (getFence() - index);
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
}
遍历方式
package Tree;
import java.util.*;
public class VectorRandomAccessTest {
public static void main(String[] args) {
Vector vec= new Vector();
for (int i=0; i<100000; i++)
vec.add(i);
iteratorThroughRandomAccess(vec) ;//随机访问形式 get
iteratorThroughIterator(vec) ;//迭代器
iteratorThroughFor2(vec) ;//for循环
iteratorThroughEnumeration(vec) ;//Enumeration
}
public static void iteratorThroughRandomAccess(List list) {
long startTime;
long endTime;
startTime = System.currentTimeMillis();
for (int i=0; i<list.size(); i++) {
list.get(i);
}
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("iteratorThroughRandomAccess:" + interval+" ms");
}
public static void iteratorThroughIterator(List list) {
long startTime;
long endTime;
startTime = System.currentTimeMillis();
for(Iterator iter = list.iterator(); iter.hasNext(); ) {
iter.next();
}
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("iteratorThroughIterator:" + interval+" ms");
}
public static void iteratorThroughFor2(List list) {
long startTime;
long endTime;
startTime = System.currentTimeMillis();
for(Object obj:list)
;
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("iteratorThroughFor2:" + interval+" ms");
}
public static void iteratorThroughEnumeration(Vector vec) {
long startTime;
long endTime;
startTime = System.currentTimeMillis();
for(Enumeration enu = vec.elements(); enu.hasMoreElements(); ) {
enu.nextElement();
}
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("iteratorThroughEnumeration:" + interval+" ms");
}
}
使用示例
package Test;
import java.util.Vector;
import java.util.Enumeration;
public class VectorTest {
public static void main(String[] args) {
// 新建Vector
Vector vec = new Vector();
// 添加元素
vec.add("1");
vec.add("2");
vec.add("3");
vec.add("4");
vec.add("5");
// 设置第一个元素为100
vec.set(0, "100");
// 将“500”插入到第3个位置
vec.add(2, "300");
System.out.println("vec:"+vec);
// (顺序查找)获取100的索引
System.out.println("vec.indexOf(100):"+vec.indexOf("100"));
// (倒序查找)获取100的索引
System.out.println("vec.lastIndexOf(100):"+vec.lastIndexOf("100"));
// 获取第一个元素
System.out.println("vec.firstElement():"+vec.firstElement());
// 获取第3个元素
System.out.println("vec.elementAt(2):"+vec.elementAt(2));
// 获取最后一个元素
System.out.println("vec.lastElement():"+vec.lastElement());
// 获取Vector的大小
System.out.println("size:"+vec.size());
// 获取Vector的总的容量
System.out.println("capacity:"+vec.capacity());
// 获取vector的“第2”到“第4”个元素
System.out.println("vec 2 to 4:"+vec.subList(1, 4));
// 通过Enumeration遍历Vector
Enumeration enu = vec.elements();
while(enu.hasMoreElements())
System.out.println("nextElement():"+enu.nextElement());
Vector retainVec = new Vector();
retainVec.add("100");
retainVec.add("300");
// 获取“vec”中包含在“retainVec中的元素”的集合
System.out.println("vec.retain():"+vec.retainAll(retainVec));
System.out.println("vec:"+vec);
// 获取vec对应的String数组
String[] arr = (String[]) vec.toArray(new String[0]);
for (String str:arr)
System.out.println("str:"+str);
// 清空Vector clear()和removeAllElements()一样!
vec.clear();
//vec.removeAllElements();
// 判断Vector是否为空
System.out.println("vec.isEmpty():"+vec.isEmpty());
}
}
迭代器异常
package Test;
import java.util.Iterator;
import java.util.Vector;
public class FailFastTest {
private static Vector<Integer> vector = new Vector<>();
private static class threadOne extends Thread{
public void run() {
Iterator<Integer> iterator = vector.iterator();
while(iterator.hasNext()){
int i = iterator.next();
// if (i==3){
// iterator.remove();//自身迭代器去修改的时候就是可以的 不会报错
// }else{
// System.out.println("ThreadOne 遍历:" + i);
// }
System.out.println("ThreadOne 遍历:" + i);
}
}
}
private static class threadTwo extends Thread{
public void run(){
int i = 0 ;
while(i < 6){
System.out.println("ThreadTwo run:" + i);
if(i == 3){
vector.remove(i);
}
i++;
}
}
}
public static void main(String[] args) {
for(int i = 0 ; i < 10;i++){
vector.add(i);
}
new threadOne().start();
new threadTwo().start();
}
}
迭代器正常
package Test;
import java.util.Iterator;
import java.util.Vector;
public class FailFastTest {
private static Vector<Integer> vector = new Vector<>();
private static class threadOne extends Thread{
public void run() {
Iterator<Integer> iterator = vector.iterator();
while(iterator.hasNext()){
int i = iterator.next();
if (i==3){
iterator.remove();//自身迭代器去修改的时候就是可以的 不会报错
}else{
System.out.println("ThreadOne 遍历:" + i);
}
}
}
}
public static void main(String[] args) {
for(int i = 0 ; i < 10;i++){
vector.add(i);
}
new threadOne().start();
}
}
Enumeration正常 即便有其他的线程对其进行修改 还是不会报错 还是能够正常运行 输出最终的结果
package Test;
import java.util.Enumeration;
import java.util.Vector;
public class FailFastTest {
private static Vector<Integer> vector = new Vector<>();
private static class threadOne extends Thread {
public void run() {
Enumeration enumeration = vector.elements();
while (enumeration.hasMoreElements()) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("Threadone run" + enumeration.nextElement());
}
}
}
private static class threadTwo extends Thread {
public void run() {
int i = 0;
while (i < 6) {
System.out.println("ThreadTwo run:" + i);
if (i == 3) {
vector.remove(i);
}
i++;
}
}
}
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
vector.add(i);
}
new threadOne().start();
new threadTwo().start();
}
}
"C:\Program Files\Java\jdk1.8.0_111\bin\java" -Didea.launcher.port=7535 "-Didea.launcher.bin.path=F:\win7\IntelliJ IDEA 2016.3.1\bin" -Dfile.encoding=UTF-8 -classpath "C:\Program Files\Java\jdk1.8.0_111\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\cldrdata.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\jaccess.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\jfxrt.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\nashorn.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\sunec.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\sunjce_provider.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\sunpkcs11.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\ext\zipfs.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\javaws.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\jce.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\jfxswt.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\management-agent.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\resources.jar;C:\Program Files\Java\jdk1.8.0_111\jre\lib\rt.jar;E:\untitled\out\production\untitled;F:\win7\IntelliJ IDEA 2016.3.1\lib\idea_rt.jar" com.intellij.rt.execution.application.AppMain Test.FailFastTest
ThreadTwo run:0
ThreadTwo run:1
ThreadTwo run:2
ThreadTwo run:3
ThreadTwo run:4
ThreadTwo run:5
Threadone run0
Threadone run1
Threadone run2
Threadone run4
Threadone run5
Threadone run6
Threadone run7
Threadone run8
Threadone run9
Process finished with exit code 0
相关文章
- 暂无相关文章
用户点评